DRAWING OF SPECIFIED GEOMETRY
INPUT DATA FOR CONSOLIDATION

- \(\alpha = 1/2 \)

<table>
<thead>
<tr>
<th>Layer #</th>
<th>OCR</th>
<th>Cc</th>
<th>Cr</th>
<th>e0</th>
<th>Cv</th>
<th>Drains at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{Pc} / \text{Po})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IMMEDIATE SETTLEMENT, Si

<table>
<thead>
<tr>
<th>Node #</th>
<th>Settlement along section:</th>
<th>Layer</th>
<th>Young's Modulus, E (k)</th>
<th>Poisson's Ratio, μ</th>
<th>Settlement of each layer, Si(k)</th>
<th>Initial Z</th>
<th>Final Z *</th>
<th>Total Settlement Sum of Si(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.00</td>
<td>1</td>
<td>110000</td>
<td>0.3000</td>
<td>0.0644</td>
<td>21.50</td>
<td>20.40</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>450000</td>
<td>2</td>
<td>450000</td>
<td>0.3000</td>
<td>0.8565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>280000</td>
<td>3</td>
<td>280000</td>
<td>0.3000</td>
<td>0.1586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>750000</td>
<td>4</td>
<td>750000</td>
<td>0.3000</td>
<td>0.0248</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Final Z is calculated assuming only 'Immediate Settlement' exists.
<table>
<thead>
<tr>
<th>Node #</th>
<th>X [ft.]</th>
<th>Y [ft.]</th>
<th>Original Z Sc [ft.]</th>
<th>Settlement Sc [ft.]</th>
<th>Final Z * [ft.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>206.00</td>
<td>0.00</td>
<td>21.56</td>
<td>0.00</td>
<td>21.50</td>
</tr>
</tbody>
</table>

*Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.
Appendix F-3
Segment D, Station 167+00
NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'
BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

SURFACE DATA: BATHYMETRY DATA PROVIDED BY DWR DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO DATE OF SURVEY 2-7-07

EXHIBIT G-21

SUBSURFACE PROFILE USED IN ANALYSES
CROSS SECTION STA 167+00

1 inch = 100 ft Hor.
1 inch = 20 ft Vert.

1 inch = 100 ft Hor.
1 inch = 20 ft Vert.

DATE:
SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

M. VECCHIO, HDR
N. HART, BCI
R. LOKTEFF, BCI
M. ROBERTSON, BCI

7/27/11 Z:\Active Projects\1978.X Southport EIP\1978.2 Southport EIP- TO2\CAD Drawings\Alignment Cross-Sections.dwg
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

Surface Data:
Bathymetry Data provided by DWR
Date of bathymetry Jan. 2008

Lidar Data provided by City of West Sacramento
Date of Survey 2-7-07

Steady State Seepage Analysis 200 Yr WSE
400 Ft Setback Levee

Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

(2) New Compacted Clay Levee, Kh=0.0028 ft/day (=1x10^-6 cm/s) 0.25
(6) St/Sand, K=0.005 ft/day (=2x10^-6 cm/s) 0.25
(11) Sand, Kh=0.034 ft/day (=1x10^-4 cm/s) 0.25
(12) St/Silt/Sand, K=0.006 ft/day (=6x10^-7 cm/s) 0.25
(15) Clay, Kh=0.01 ft/day (=3x10^-4 cm/s) 0.25
(16) Silt/Sand, Kh= 0.85 ft/day (=3x10^-4 cm/s) 0.25

Design
Checked
Drawn

M. VECCHIO, HDR
N. HART, B. CRAWFORD, BCI
R. LOKTEFF, BCI
M. ROBERTSON, BCI

DATE:
7/26/11 Z:\Active Projects\1978.X Southport EIP\1978.2 Southport EIP- TO2\CAD Drawings\Seepage and Slope Stability Analysis Sta 167+00.dwg

JULY 2011
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn

Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-24

STA 167+00
STEADY STATE SEEPAGE ANALYSIS 200 YR WSE
25 FT CUT-OFF WALL TO MITIGATE SHALLOW UNDERSEEPAPE
400 FT SETBACK LEVEE

Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

1. Slurry Wall (SB),
 Kh = 0.00028 ft/day (1x10^-7 cm/s) 1
2. New Compacted Clay Levee,
 Kh = 0.0028 ft/day (1x10^-6 cm/s) 0.25
6. Silt/Clay,
 Kh = 0.057 ft/day (2x10^-6 cm/s) 0.25
11. Sand,
 Kh = 0.52 ft/day (3x10^-3 cm/s) 0.25
12. Silt/Silty Sand,
 Kh = 0.34 ft/day (2x10^-4 cm/s) 0.25
13. Clay,
 Kh = 0.00168 ft/day (2x10^-7 cm/s) 0.25
16. Silty Sand,
 Kh = 0.85 ft/day (3x10^-4 cm/s) 0.25
Breakout Point
Exit Gradient at Landslide Toe
Composite Blanket ML/CL and $\lambda = (0.4-19)(19-(-4.59)) = 0.51$

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn
Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-25
STA 167+00
STEADY STATE SEEPAGE ANALYSIS HTOL WSE
25 FT CUT-OFF WALL TO MITIGATE SHALLOW UNDERSEEPAGE
400 FT SETBACK LEVEE

Material ID and Type, Hydraulic Conductivity (Kb), Anisotropic Ratio (Kv/Kh)

(1) Slurry Wall (BB), $K_v=0.00028 \text{ ft/day} (=1\times10^{-7} \text{ cm/s})$, 1
(2) New Compacted Clay Levee, $K_v=0.0028 \text{ ft/day} (=1\times10^{-6} \text{ cm/s})$, 0.25
(6) Silt/Clay, $K_h=0.057 \text{ ft/day} (=2\times10^{-5} \text{ cm/s})$, 0.25
(11) Sand, $K_h=8.52 \text{ ft/day} (=3\times10^{-3} \text{ cm/s})$, 0.25
(12) Silt/Silty Sand, $K_h=0.34 \text{ ft/day} (=1.2\times10^{-4} \text{ cm/s})$, 0.25
(15) Clay, $K_{v}=0.00168 \text{ ft/day} (=6\times10^{-7} \text{ cm/s})$, 0.25
(16) Silty Sand, $K_{v}=0.05 \text{ ft/day} (=3\times10^{-4} \text{ cm/s})$, 0.25
Note: Horizontal Datum is the California Coordinate System, Zone 2 (NAD 83) Vertical Datum is NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6’
Bar length on original drawing equals one inch. Adjust scale accordingly.
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn
Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-27
STA 167+00
STEADY STATE SLOPE STABILITY ANALYSIS HTOL WSE
25 FT CUT-OFF WALL TO MITIGATE SHALLOW UNDERSEEPPAGE
400 FT SETBACK LEVEE

Material ID and Type, Hydraulic Conductivity (Kh), Unit Weight, Cohesion, Friction Angle

(1) Sherry Wall (SB), K_h=0.00326 ft/day (1x10^-7 cm/s) 100 psf 300 psf 0°
(2) New Compacted Clay Loam, K_h=0.0038 ft/day (1x10^-4 cm/s) 120 psf 50 psf 30°
(6) Silt/Clay, K_h=0.057 ft/day (2x10^-5 cm/s) 117 psf 50 psf 35°
(11) Sand, K_h=0.52 ft/day (2x10^-3 cm/s) 116 psf 0 psf 30°
(15) Clay, K_h=0.0016 ft/day (6x10^-7 cm/s) 112 psf 0 psf 33°
(16) Silt, K_h=0.05 ft/day (3x10^-4 cm/s) 116 psf 0 psf 33°

Distance (feet)

FS for critical failure surface
Material ID and Type, Hydraulic Conductivity (K_h), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle, Total Cohesion, Total Friction Angle

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Hydraulic Conductivity (K_h)</th>
<th>Saturated Unit Weight</th>
<th>Effective Cohesion</th>
<th>Effective Friction Angle</th>
<th>Total Cohesion</th>
<th>Total Friction Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Silty Sand</td>
<td>Kh = 0.00036 ft/day</td>
<td>100 psf</td>
<td>30 psf</td>
<td>0.0 ft/day</td>
<td>130 psf</td>
<td>30 psf</td>
</tr>
<tr>
<td>(2) New-Compacted Clay</td>
<td>Kh = 0.0058 ft/day</td>
<td>117 psf</td>
<td>30 psf</td>
<td>0.0 ft/day</td>
<td>114 psf</td>
<td>30 psf</td>
</tr>
<tr>
<td>(3) Silty Clay</td>
<td>Kh = 0.0071 ft/day</td>
<td>118 psf</td>
<td>30 psf</td>
<td>0.0 ft/day</td>
<td>114 psf</td>
<td>30 psf</td>
</tr>
<tr>
<td>(4) Silty Clay</td>
<td>Kh = 0.0036 ft/day</td>
<td>112 psf</td>
<td>30 psf</td>
<td>0.0 ft/day</td>
<td>114 psf</td>
<td>30 psf</td>
</tr>
</tbody>
</table>

SCALE 1" = 60'

Surface Data

Bathymetry Data: Provided by DWR
Date of Survey: Jan 2008

Bathymetry Data: Provided by City of West Sacramento
Date of Survey: 2-7-07

Surface Data: Provided by City of West Sacramento
Date of Survey: 2-7-07

RAPI-DRAW-DOWN SLOPE STABILITY ANALYSIS
25 FT CUT-OFF WALL TO MITIGATE SHALLOW UNDERSEEPAGE
400 FT SETBACK LEVEE
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn
Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008

LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-29
STA 167+00
END-OF-CONSTRUCTION SLOPE STABILITY ANALYSIS
25 FT CUT-OFF WALL TO MITIGATE SHALLOW UNDERSEEPAGE
400 FT SETBACK LEVEE

Material ID and Type, Hydraulic Conductivity (Kh), Unit Weight, Cohesion, Friction Angle

(1) Clinker Wall (CB),
Kh = 0.0006 ft/day (0.6 x 10^-6 m/s) 100 pcf 300 pcf 0°

(2) New Compacted Clay (CC),
Kh = 0.00006 ft/day (0.6 x 10^-7 m/s) 130 pcf 50 pcf 30°

(6) Silty Clay (SC),
Kh = 0.0005 ft/day (0.5 x 10^-6 m/s) 117 pcf 50 pcf 30°

(11) Sand (SA),
Kh = 0.0005 ft/day (0.5 x 10^-6 m/s) 118 pcf 0 pcf 50°

(12) Silty Clay (SC),
Kh = 0.0004 ft/day (0.4 x 10^-6 m/s) 144 pcf 300 pcf 30°

(15) Clay (CL),
Kh = 0.0016 ft/day (1.6 x 10^-6 m/s) 112 pcf 0 pcf 30°

(16) Silty Clay (SC),
Kh = 0.0005 ft/day (0.5 x 10^-6 m/s) 118 pcf 0 pcf 30°

(19) Clay (Total Silt content),
Kh = 0.00006 ft/day (0.6 x 10^-7 m/s) 112 pcf 100 pcf 16°
PROJECT IDENTIFICATION

<table>
<thead>
<tr>
<th>Title:</th>
<th>Station 167+00: Southport EIP - TO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>1978 - 2</td>
</tr>
<tr>
<td>Client:</td>
<td>HDR, Inc.</td>
</tr>
<tr>
<td>Designer:</td>
<td>David J. Morrell</td>
</tr>
<tr>
<td>Station Number:</td>
<td>167+00 (Segment D)</td>
</tr>
</tbody>
</table>

Description:

Company's information:

<table>
<thead>
<tr>
<th>Name:</th>
<th>Blackburn Consulting, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street:</td>
<td>2491 Boatman Avenue</td>
</tr>
<tr>
<td></td>
<td>West Sacramento, CA 95691</td>
</tr>
<tr>
<td>Telephone #:</td>
<td></td>
</tr>
<tr>
<td>Fax #:</td>
<td></td>
</tr>
<tr>
<td>E-Mail:</td>
<td></td>
</tr>
</tbody>
</table>

Original file path and name: Z:\Active sed Segment D - STA 167+00 Settlement Analysis.2ST

Original date and time of creating this file: Mon May 02 11:23:12 2011

GEOMETRY:

Analysis of a 2D geometry
INPUT DATA – FOUNDATION LAYERS – 6 layers

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft3]</th>
<th>Poisson's Ratio, μ</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115.00</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>111.00</td>
<td>0.35</td>
</tr>
<tr>
<td>3</td>
<td>118.00</td>
<td>0.35</td>
</tr>
<tr>
<td>4</td>
<td>118.00</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>121.00</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>121.90</td>
<td>0.30</td>
</tr>
</tbody>
</table>

INPUT DATA – EMBANKMENT LAYERS – 1 layer

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft3]</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125.00</td>
</tr>
</tbody>
</table>

INPUT DATA OF WATER

<table>
<thead>
<tr>
<th>Point #</th>
<th>Coordinates (X, Z) :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X) [ft.]</td>
</tr>
<tr>
<td>1</td>
<td>-400.00</td>
</tr>
<tr>
<td>2</td>
<td>400.00</td>
</tr>
</tbody>
</table>
DRAWING OF SPECIFIED GEOMETRY
INPUT DATA FOR CONSOLIDATION

- \(\alpha = \frac{1}{2} \)

<table>
<thead>
<tr>
<th>Layer #</th>
<th>OCR</th>
<th>(C_c)</th>
<th>(C_r)</th>
<th>(e_0)</th>
<th>(C_v)</th>
<th>Drains at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[ft (^2)/day]</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>1.00</td>
<td>0.39</td>
<td>0.07</td>
<td>1.25</td>
<td>4,5000 Bottom</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>1.00</td>
<td>0.31</td>
<td>0.07</td>
<td>0.98</td>
<td>0.1200 Bottom</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>1.00</td>
<td>0.30</td>
<td>0.07</td>
<td>0.94</td>
<td>0.7000 Bottom</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IMMEDIATE SETTLEMENT, SI

<table>
<thead>
<tr>
<th>Node #</th>
<th>Settlement along section: X [ft.]</th>
<th>Y [ft.]</th>
<th>Layer (k)</th>
<th>Young’s Modulus, E [lb/ft²]</th>
<th>Poisson’s Ratio, μ</th>
<th>Settlement of each layer, Si(k) [ft.]</th>
<th>Initial Z [ft.]</th>
<th>Final Z * [ft.]</th>
<th>Total Settlement Sum of Si(k), [ft.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.00</td>
<td>0.00</td>
<td>1</td>
<td>90000</td>
<td>0.3000</td>
<td>0.1757</td>
<td>19.40</td>
<td>18.28</td>
<td>1.12</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>125000</td>
<td>0.3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td>125000</td>
<td>0.3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td>125000</td>
<td>0.3500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>5</td>
<td>70000</td>
<td>0.3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
<td>240000</td>
<td>0.3000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Final Z is calculated assuming only 'Immediate Settlement' exists.
ULTIMATE SETTLEMENT, Sc

<table>
<thead>
<tr>
<th>Node #</th>
<th>X [ft.]</th>
<th>Y [ft.]</th>
<th>Original Z [ft.]</th>
<th>Settlement Sc</th>
<th>Final Z [ft.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.00</td>
<td>0.00</td>
<td>19.40</td>
<td>1.63</td>
<td>17.77</td>
</tr>
</tbody>
</table>

Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.
Appendix F-4
Segment F, Station 241+00
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

PROJECT MANAGER

M. VECCHIO, HDR
N. HART, BCI
R. LOKTEFF, BCI
M. ROBERTSON, BCI

DATE:
JULY 2011

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY: JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY: 2-7-07

EXHIBIT G-30

SUBSURFACE PROFILE USED IN ANALYSES
CROSS SECTION STA 241+00

1 inch = 100 ft Hor.
1 inch = 20 ft Vert.
NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008

LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-31

STA 241+00
STEADY STATE SEEPAGE ANALYSIS 200 YR WSE
400 FT SETBACK LEVEE

Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

(2) New Compacted Clay Levee, Kth=0.0028 ft/day (=1x10-6 cm/s) 0.25
(5) SB/Silty Sand(Dry WL >8%fwp), Kth=0.285 ft/day (=1.2x10-4 cm/s) 0.25
(9) ML/CL, Kth=0.067 ft/day (=2x10-6 cm/s) 0.25
(11) Sand, Ktv=8.52 ft/day (=3x10-3 cm/s) 0.25
(20) Sand/Silty Sand, Ktv=2.84 ft/day (=1x10-3 cm/s) 0.25
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn
Project Manager

PROJ NUM: 453318-147518-028

DATE: JULY 2011

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR DATE OF SURVEY 2-7-07
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO DATE OF SURVEY 2-7-07

EXHIBIT G-32
STA 241+00
STEADY STATE SEEPAGE ANALYSIS 200 YR WSE
400 FT SETBACK LEVEE WITH 100 FT WIDE SEEPAGE BERM

Material ID and Type, Hydraulic Conductivity (Kv), Anisotropic Ratio (Kv/Kh)

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Hv</th>
<th>Kt</th>
<th>Kv/Kh</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Compacted Clay Levee</td>
<td>0.0028 ft/day</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>MLCL</td>
<td>0.057 ft/day</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>0.52 ft/day</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Sandy/Silty Sand</td>
<td>2.84 ft/day</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Silty Sand Dried (Dry Wet, >66ppt)</td>
<td>0.066 ft/day</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

SCALE 1" = 60'
Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

- New Compacted Clay Levee, Kh=0.0028 ft/day (≈1×10^-6 cm/s) 0.25
- MU/CL, Kh=0.057 ft/day (≈2×10^-5 cm/s) 0.25
- Sand/Silty Sand, Kh=0.52 ft/day (≈3×10^-3 cm/s) 0.25
- Sand/Silty Sand (Dry Mt. >86spf), Kh=2.84 ft/day (≈1×10^-3 cm/s) 0.25
- Slow/Silty Sand, Kh=0.085 ft/day (≈1.2×10^-4 cm/s) 0.25

Scale: 1" = 60'

STA 241+00
STEADY STATE SEEPAGE ANALYSIS HTOL WSE
400 FT SETBACK LEVEE WITH 100 FT WIDE SEEPAGE BERM
Material ID and Type, Hydraulic Conductivity (Kh), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle

(2) New Compacted Clay Layers,
Kh=0.0268 ft/day (+3x10-6 cm/s) 130 pcf 50 pcf 36°

(9) MLCL,
Kh=0.007 ft/day (+3x10-6 cm/s) 117 pcf 50 pcf 36°

(11) MLSM,
Kh=8.52 ft/day (+3x10-3 cm/s) 118 pcf 0 pcf 36°

F/S for critical failure surface

WSE = 34.07 ft

Proposed borrow excavation

PROJ NUM: 453318-147518-028

DATE: 7/27/11 Z:\Active Projects\1978.X Southport EIP\1978.2 Southport EIP- TO2\CAD Drawings\Seepage and Slope Stability Analysis Sta 241+00.dwg

JULY 2011

M. VECCHIO, HDR
N. HART, B. CRAWFORD, BCI
R. LOKTEFF, BCI
M. ROBERTSON, BCI

SCALE 1" = 60'
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn

Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008

LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-35
STA 241+00
STEADY STATE SLOPE STABILITY ANALYSIS HTOL WSE
400 FT SETBACK LEVEE WITH 100 FT WIDE SEEPAGE BERM

Material ID and Type, Hydraulic Conductivity (Kt), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle

<table>
<thead>
<tr>
<th>Material ID and Type</th>
<th>Hydraulic Conductivity (Kt)</th>
<th>Saturated Unit Weight</th>
<th>Effective Cohesion</th>
<th>Effective Friction Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) New Compacted Clay Levee</td>
<td>K=0.032 ft/day (1x10^-4 cm/s)</td>
<td>130 pcf</td>
<td>59 pcf</td>
<td>30°</td>
</tr>
<tr>
<td>(5) MLCL</td>
<td>K=0.005 ft/day (1x10^-4 cm/s)</td>
<td>114 pcf</td>
<td>200 pcf</td>
<td>32°</td>
</tr>
<tr>
<td>(5) MLCL</td>
<td>K=0.057 ft/day (2x10^-4 cm/s)</td>
<td>117 pcf</td>
<td>59 pcf</td>
<td>35°</td>
</tr>
<tr>
<td>(11) Sand</td>
<td>K=0.52 ft/day (3x10^-3 cm/s)</td>
<td>118 pcf</td>
<td>0 pcf</td>
<td>36°</td>
</tr>
<tr>
<td>(20) Sand/Silty Sand</td>
<td>K=0.84 ft/day (1x10^-3 cm/s)</td>
<td>118 pcf</td>
<td>0 pcf</td>
<td>33°</td>
</tr>
</tbody>
</table>
NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

Material ID and Type, Hydraulic Conductivity (K_h), Anisotropic Ratio (K_v/K_h), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle, Total Cohesion, Total Friction Angle

(2) New Compacted Clay Levee,
K_h=0.0020 ft/day, K_v=0.005 ft/day
K=1 x 10^-4 cfm/s
156 pcf 50 pcf 34° 0° 100 pcf 16°
(3) Silt/Sandy Sand
K=8.05 ft/day
K_v=1 x 10^-4 cfm/s
114 pcf 200 pcf 33° 0° 200 pcf 33°
(4) ML/CL
K=8.97 ft/day
K_v=1 x 10^-4 cfm/s
114 pcf 200 pcf 33° 0° 200 pcf 33°
(5) Sand
K=8.92 ft/day
K_v=1 x 10^-4 cfm/s
116 pcf 50 pcf 33° 0° 0 pcf 36°
(6) Sand/Silty Sand
K=8.94 ft/day
K_v=1 x 10^-4 cfm/s
116 pcf 50 pcf 33° 0° 0 pcf 33°

STA 241+90
RAPID-DRAW-DOWN SLOPE STABILITY ANALYSIS
400 FT SETBACK LEVEE WITH 100 FT WIDE SEEPAGE BERM
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn
Project Manager

PROJ NUM: 453318-147518-028

DATE:
SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-37
STA 241+00
END-OF-CONSTRUCTION SLOPE STABILITY ANALYSIS
400 FT SETBACK LEVEE WITH 100 FT WIDE SEEPAGE BERM

Material ID and Type, Hydraulic Conductivity (K_h), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle

(2) New Compacted Clay Levee, K_h=0.00059 GYD, gamma=94 psf, c_eff=30 psf, phi_eff=30°
(9) NLUC, K_h=8.05 ft/day, (gamma=94 psf, c_eff=30 psf, phi_eff=30°
(11) Sand, K_h=8.32 ft/day, (gamma=94 psf, c_eff=30 psf, phi_eff=30°
(20) Sand/Silt/Sand, K_h=2.84 ft/day, (gamma=94 psf, c_eff=30 psf, phi_eff=30°
(9) CH/Kh, K_h=0.085 ft/day, (gamma=94 psf, c_eff=30 psf, phi_eff=30°

Distance (feet)
Station 241+00: Southport EIP - TO2

Report created by FoSSA(2.0): Copyright (c) 2003-2007, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Station 241+00: Southport EIP - TO2
Project Number: 1978 - 2
Client: HDR, Inc.
Designer: David J. Morrell
Station Number: 241+00 (Segment F)

Description:

Company's information:
Name: Blackburn Consulting, Inc.
Street: 2491 Boatman Avenue
 West Sacramento, CA 95691
Telephone #:
Fax #:
E-Mail:

Original file path and name: Z:\Active sed Segment F - STA 241+00 Settlement Analysis.2ST
Original date and time of creating this file: Mon May 02 11:23:12 2011

GEOMETRY: Analysis of a 2D geometry
INPUT DATA - FOUNDATION LAYERS - 4 layers

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft3]</th>
<th>Poisson's Ratio μ</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 112.00</td>
<td>0.35</td>
<td>Lean Clay (CL) to Silt (ML)</td>
</tr>
<tr>
<td>2 117.00</td>
<td>0.30</td>
<td>Silt (ML)</td>
</tr>
<tr>
<td>3 117.00</td>
<td>0.30</td>
<td>Sandy Silt (ML) to Silty Sand (SM)</td>
</tr>
<tr>
<td>4 118.00</td>
<td>0.30</td>
<td>Sand (SP-SM)</td>
</tr>
</tbody>
</table>

INPUT DATA - EMBANKMENT LAYERS - 1 layers

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft3]</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 125.00</td>
<td>New Levee Embankment</td>
</tr>
</tbody>
</table>

INPUT DATA OF WATER

<table>
<thead>
<tr>
<th>Point #</th>
<th>Coordinates (X, Z) :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X) (Z)</td>
</tr>
<tr>
<td></td>
<td>[ft.] [ft.]</td>
</tr>
<tr>
<td>1</td>
<td>-400.00 16.20</td>
</tr>
<tr>
<td>2</td>
<td>400.00 16.20</td>
</tr>
</tbody>
</table>
INPUT DATA FOR CONSOLIDATION

\[\alpha = 1/2 \]

<table>
<thead>
<tr>
<th>Layer #</th>
<th>OCR</th>
<th>Cc</th>
<th>Cr</th>
<th>e₀</th>
<th>Cv</th>
<th>Drains at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[ft²/day]</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IMMEDIATE SETTLEMENT, Si

<table>
<thead>
<tr>
<th>Node #</th>
<th>Settlement along section:</th>
<th>Layer</th>
<th>Young's Modulus, E (k)</th>
<th>Poisson's Ratio, μ</th>
<th>Settlement of each layer, Si(k) (ft.)</th>
<th>Initial Z</th>
<th>Final Z *</th>
<th>Total Settlement Sum of S(k), (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X 200.00 Y 0.00</td>
<td>1</td>
<td>85000</td>
<td>0.3500</td>
<td>0.0798</td>
<td>22.20</td>
<td>21.37</td>
<td>0.83</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>55000</td>
<td>0.3000</td>
<td>0.1625</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>55000</td>
<td>0.3000</td>
<td>0.3333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
<td>315000</td>
<td>0.3000</td>
<td>0.2088</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Final Z is calculated assuming only 'Immediate Settlement' exists.
<table>
<thead>
<tr>
<th>Node #</th>
<th>X</th>
<th>Y</th>
<th>Original Z</th>
<th>Settlement</th>
<th>Final Z *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.00</td>
<td>0.00</td>
<td>22.20</td>
<td>0.90</td>
<td>22.20</td>
</tr>
</tbody>
</table>

*Note: Final Z is calculated assuming only 'Ultimate Settlement' exists.
Appendix F-5
Segment G, Station 283+00
NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07
LEAD DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

SUBSURFACE PROFILE USED IN ANALYSES
CROSS SECTION STA 283+00

1 inch = 100 ft Hor.
1 inch = 20 ft Vert.
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

STA 283+00
ST ESTATE SEEPAGE ANALYSIS 200 YR WSE ADJACENT LEVEE
NOTE:

HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6’

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

EXHIBIT G-40

STA 283+00

STEADY STATE SEEPAGE ANALYSIS 200 YR WSE

ADJACENT LEVEE WITH MINIMAL SEEPAGE BERM (76 FT WIDE BERM, 4X LEVEE HEIGHT)

Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

(2) New Compacted Clay Levee, Kh = 0.0028 ft/day (<1x10^-6 cmis) 0.25
(3) SB/Cliy, Kh = 0.057 ft/day (<2x10^-5 cmis) 0.25
(11) Sand, Kh = 0.52 ft/day (<3x10^-3 cmis) 0.25
(17) Gravel, Kh = 28.4 ft/day (<1x10^-2 cmis) 0.25
(20) Sand/Silty Sand, Kh = 28.4 ft/day (<1x10^-2 cmis) 0.25
(23) Sand, Kh = 28.4 ft/day (<1x10^-2 cmis) 0.25
(6) CL (Pl<20 & Dry Wt <95pcf), Kh = 1.14 ft/day (<4x10^-4 cmis) (2) 0.25
(16) Silt/Silty Sand (Dry Wt >95pcf), Kh = 0.34 ft/day (<1.2x10^-4 cmis) (2) 0.25
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn

Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-41
STA 283+00
STEADY STATE SEEPAGE ANALYSIS HTOL WSE ADJACENT LEVEE WITH MINIMAL SEEPAGE BERM
(76 FT WIDE BERM, 4X LEVEE HEIGHT)

SCALE 1" = 60'

Material ID and Type, Hydraulic Conductivity (Kh), Anisotropic Ratio (Kv/Kh)

(2) New Compacted Clay Levee, Kh=0.0028 ft/day (1x10^-6 cm/s) 0.25
(3) Silt/Clay, Kh=0.057 ft/day (3x10^-6 cm/s) 0.25
(11) Sand, Kh=8.82 ft/day (3x10^-3 cm/s) 0.25
(17) Gravel, Kh=28.41 ft/day (1x10^-2 cm/s) 0.25
(20) Sand/Silt Sand, Kh=2.84 ft/day (1x10^-3 cm/s) 0.5
(23) Sand, Kh=28.41 ft/day (1x10^-2 cm/s) 0.25
(6) CL (P<20 & Dry Wt <68pct), Kh=1.14 ft/day (4x10^-4 cm/s) (2) 0.25
(16) Silt/Silt Sand (Dry Wt >68pct), Kh=0.34 ft/day (1.2x10^-4 cm/s) (2) 0.25
NOTE:

HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

Material ID and Type, Hydraulic Conductivity (Kh), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle

- New Compacted Clay, K_h=0.0028 ft/day (r=10'-0 cmsg) 130 pcf 59 pcf 30°
- Silty Clay, K_h=0.057 ft/day (r=10'-0 cmsg) 117 pcf 50 pcf 35°
- Clay, K_h=1.14 ft/day (r=10'-0 cmsg) 114 pcf 200 pcf 33°
- Sand, K_h=6.52 ft/day (r=10'-0 cmsg) 116 pcf 0 pcf 36°
- Silty Clay, K_h=0.34 ft/day (r=10'-0 cmsg) 114 pcf 200 pcf 33°
- Sand, K_h=0.41 ft/day (r=10'-0 cmsg) 116 pcf 0 pcf 34°
- Sand, K_h=2.04 ft/day (r=10'-0 cmsg) 116 pcf 0 pcf 28°
- Sand, K_h=2.04 ft/day (r=10'-0 cmsg) 116 pcf 0 pcf 28°
- Existing Levee Sand, K_h=8.52 ft/day (r=10'-0 cmsg) 116 pcf 0 pcf 30°

STA 283+00
STEADY STATE SLOPE STABILITY ANALYSIS 200 YR WSE
ADJACENT LEVEE WITH MINIMAL SEEPAGE BERM
(76 FT WIDE BERM, 4X LEVEE HEIGHT)
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.

EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH. ADJUST SCALE ACCORDINGLY.

STAN: 283+00

STAY STATE SLOPE STABILITY ANALYSIS HTOL WSE ADJACENT LEVEE WITH MINIMAL SEEPAGE BERM (76 FT WIDE BERM, 4X LEVEE HEIGHT)
NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83) VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY 2-7-07

EXHIBIT G-44

Material ID and Type, Hydraulic Conductivity (Kh), Saturated Unit Weight, Effective Cohesion, Effective Friction Angle, Total Cohesion, Total Friction Angle

(2) New Compacted Clay Levee,
(3) Uncracked,
(6) CL,
(11) Sand,
(16) Silt/Sandy Sand,
(17) Gravel,
(20) Sand/Silty Sand,
(23) Sand,
(11a) Existing Levee Sand,
(11a) Existing Levee SP

Rapid-Draw-Down Slope Stability Analysis
Adjacent Levee with Minimal Seepage Berm
(76 ft Wide BERM, 4x Levee Height)
Levee Improvement Program
Southport Early Implementation Project

NOTE:
HORIZONTAL DATUM IS THE CALIFORNIA COORDINATE SYSTEM, ZONE 2 (NAD 83)
VERTICAL DATUM IS NGVD 88.
EL NAVD 88 = EL NGVD 29 + 2.6'

BAR LENGTH ON ORIGINAL DRAWING EQUALS ONE INCH.
ADJUST SCALE ACCORDINGLY.

Designed
Checked
Drawn

Project Manager

PROJ NUM: 453318-147518-028

DATE:

SURFACE DATA:
BATHYMETRY DATA PROVIDED BY DWR
DATE OF BATHYMETRY: JAN. 2008
LIDAR DATA PROVIDED BY CITY OF WEST SACRAMENTO
DATE OF SURVEY: 2-7-07

EXHIBIT G-45
STA 283+00
END-OF-CONSTRUCTION SLOPE STABILITY ANALYSIS
ADJACENT LEVEE WITH MINIMAL SEEPAGE BERM
(76 FT WIDE BERM, 4X LEVEE HEIGHT)
Station 283+00: Southport EIP - TO2

Report created by FoSSA(2.0): Copyright (c) 2003-2007, ADAMA Engineering, Inc.

PROJECT IDENTIFICATION

Title: Station 283+00: Southport EIP - TO2
Project Number: 1978 - 2
Client: HDR, Inc.
Designer: David J. Morrell
Station Number: 283+00 (Segment G)

Description:

Company’s information:

Name: Blackburn Consulting, Inc.
Street: 2491 Boatman Avenue
West Sacramento, CA 95691

Telephone #:
Fax #:
E-Mail:

Original file path and name: Z:\Active..... lex Segment G - STA 283+00 Settlement Analysis.2ST
Original date and time of creating this file: Mon May 02 11:23:12 2011

GEOMETRY: Analysis of a 2D geometry
INPUT DATA – FOUNDATION LAYERS – 7 layers

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft2]</th>
<th>Poisson's Ratio μ</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>113.00</td>
<td>0.35 Lean Clay (CL)</td>
</tr>
<tr>
<td>2</td>
<td>113.00</td>
<td>0.35 Lean Clay (CL)</td>
</tr>
<tr>
<td>3</td>
<td>115.00</td>
<td>0.30 Silt (ML)</td>
</tr>
<tr>
<td>4</td>
<td>119.00</td>
<td>0.30 Sandy Silt (ML) to Silty Sand (SM)</td>
</tr>
<tr>
<td>5</td>
<td>122.00</td>
<td>0.30 Sand (SP-SM) to Silty Sand (SM)</td>
</tr>
<tr>
<td>6</td>
<td>130.00</td>
<td>0.30 Silty Gravel (GM)</td>
</tr>
<tr>
<td>7</td>
<td>115.00</td>
<td>0.30 Sand (SP)</td>
</tr>
</tbody>
</table>

INPUT DATA – EMBANKMENT LAYERS – 1 layers

<table>
<thead>
<tr>
<th>Wet Unit Weight, γ [lb/ft2]</th>
<th>Description of Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125.00 New Levee Embankment</td>
</tr>
</tbody>
</table>

INPUT DATA OF WATER

<table>
<thead>
<tr>
<th>Point #</th>
<th>Coordinates (X, Z) :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X) [ft.] (Z) [ft.]</td>
</tr>
<tr>
<td>1</td>
<td>-400.00 16.50</td>
</tr>
<tr>
<td>2</td>
<td>400.00 16.50</td>
</tr>
</tbody>
</table>
INPUT DATA FOR CONSOLIDATION \(\alpha = 1/2 \)

<table>
<thead>
<tr>
<th>Layer #</th>
<th>OCR</th>
<th>Cc</th>
<th>Cr</th>
<th>e0</th>
<th>Cv</th>
<th>Drains at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[ft (^2)/day]</td>
</tr>
<tr>
<td>1</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>1.00</td>
<td>0.38</td>
<td>0.07</td>
<td>1.21</td>
<td>3.4000 Bottom</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>1.00</td>
<td>0.38</td>
<td>0.07</td>
<td>1.21</td>
<td>3.4000 Bottom</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IMMEDIATE SETTLEMENT, Si

<table>
<thead>
<tr>
<th>Node #</th>
<th>Settlement along section: X [ft.]</th>
<th>Settlement along section: Y [ft.]</th>
<th>Layer</th>
<th>Young's Modulus, E [lb/ft²]</th>
<th>Poisson's Ratio, μ</th>
<th>Settlement of each layer, Si(k) [ft.]</th>
<th>Initial Z [ft.]</th>
<th>Final Z * [ft.]</th>
<th>Total Settlement Sum of Si(k) [ft.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.00</td>
<td>0.00</td>
<td>1</td>
<td>125000</td>
<td>0.3500</td>
<td>0.0526</td>
<td>21.50</td>
<td>20.95</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>125000</td>
<td>0.3500</td>
<td>2</td>
<td>0.0281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>125000</td>
<td>0.3000</td>
<td>3</td>
<td>0.0551</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>60000</td>
<td>0.3000</td>
<td>4</td>
<td>0.1977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>220000</td>
<td>0.3000</td>
<td>5</td>
<td>0.1398</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80000</td>
<td>0.3000</td>
<td>6</td>
<td>0.0156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>300000</td>
<td>0.3060</td>
<td>7</td>
<td>0.0569</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Note: Final Z is calculated assuming only 'Immediate Settlement' exists.