QUESTIONs AND COMMENTs
We hope you find this report to be useful and informative. If you have any questions or comments about this report or about your drinking water, please call Chris Kania, Water Treatment Plant Superintendent, (916) 617-4870. For Water Conservation: Ryan Burnett (916) 617-4590.

OUR COMMITMENT TO YOU
The City of West Sacramento has delivered over 122 billion gallons of high quality, treated water to our residents since the opening of the George Kristoff Water Treatment Plant in 1988. Today, as West Sacramento grows, our commitment to you continues. We are proud of the service we provide and promise to continue to deliver the highest quality drinking water to you and your family.
INTRODUCTION
The City of West Sacramento is dedicated to supplying its customers with a safe and reliable supply of high quality drinking water. We are pleased to present this annual report, which conforms to a federal regulation that requires community water systems to provide customers with detailed information about their drinking water. It includes information about water supply sources, water treatment, water quality, drinking water regulations and source water protection programs. We hope that the information in this report increases your understanding of the water treatment process and your confidence in the quality of the water you drink.

WATER SUPPLY SOURCES
Landlords who receive this report should notify tenants residing in the city limits where they can view or obtain a copy of this report. This report is available on the City of West Sacramento’s website.

http://cityofwestsacramento.org/city/depts/pw/public_works_operations/
environmental_prog/waterquality.asp

Additional copies are available upon request; please contact the City of West Sacramento Public Works Department at (916) 617-4850.

The City of West Sacramento maintains the high quality of our treatment plant, protects water quality by encouraging boaters and other recreational users of the Sacramento River to use pumpouts and public restrooms rather than the river to dispose of wastes.

▶ The Rice Pesticide Workgroup, in partnership with the City of Sacramento, the County of Sacramento and the East Bay Municipal Utility District, protects water quality by encouraging boaters and other recreational users of the Sacramento River to use pumpouts and public restrooms rather than the river to dispose of wastes.

▶ The Sanitary Survey of the Sacramento River Watershed, an ongoing project in partnership with the City of Sacramento, the County of Sacramento, the Placer County Water Agency, the City of Roseville and East Bay Municipal Utility District, keeps us up to date on developments in the Sacramento Valley watershed. The Sanitary Survey of 2015 was completed and is available for review at the Public Works Department, 1110 West Capitol Avenue in West Sacramento.

▶ The Drinking Water Source Assessment Program (DWSAP) allows us to identify sources of contamination and respond to possible contamination near our water treatment plant and throughout the watershed. Our Source Water Assessment was completed in November 2014. The DWSAP survey identified agricultural drainage as the activity to which West Sacramento’s surface water source is most vulnerable. A copy of the survey is available for your review at the Public Works Department, 1110 West Capitol Avenue in West Sacramento.

▶ The Regional Water Authority Water Efficiency Program partners with water agencies throughout the greater Sacramento region to help meet regulation and promote water efficiency. The program provides region-wide messaging and educational opportunities for residents through the “Be Water Smart” outreach program. In addition to outreach, the program hosts program meetings so that agencies can share best practices and create unified responses to conservation issues that affect the entire region. This program also assists in funding opportunities for individual agencies.

SOURCE WATER PROTECTION
A community’s drinking water supply is a valuable resource and needs protection. The quality and reliability of source water can have a significant impact on a community’s economy and quality of life. Given the importance of the Sacramento River to West Sacramento’s continuing growth and to the health and well-being of our residents, the City actively participates in several source water protection programs.

▶ The Rice Pesticide Workgroup, in partnership with the City of Sacramento, the County of Sacramento and the East Bay Municipal Utility District, keeps us up to date on this important water quality issue. Our program of frequent monitoring at our raw water intake during rice season has been expanded to include new rice pesticides. In addition, we continually voice our concerns about the impact of rice growing activities on source water quality in meetings with the California State Department of Pesticide Regulation, the Regional Water Quality Control Board (RWQCB), the California Rice Commission, and Agriculture Commissioners of the major rice growing counties. We have also presented our concerns directly to the RWQCB and to rice growers.

▶ The Keep the Waters Clean Campaign, in partnership with the City of Sacramento, the County of Sacramento and the East Bay Municipal

WATER TREATMENT: SURFACE WATER
Water withdrawn from the Sacramento River is treated at the City’s George Krissoff Water Treatment Plant (GKWTP), which is operated 24 hours a day by State-Certified Water Treatment Plant Operators. 3.9 billion gallons of Sacramento River water was treated in 2017.

The City of West Sacramento maintains the high quality of our treatment process through the following:

▶ A vigorous preventative maintenance program helps us to operate equipment at maximum efficiency.

▶ Membership in local, regional and national water industry organizations allows us to draw on expertise and experience outside of our own city.

▶ Monitoring current research on water treatment, and continuing education and training at our treatment plant assures you of a motivated, professional staff focused on producing the best quality water possible.

For further information about the water treatment process, please contact the GKWTP at (916) 617-4860.

WATER CONSERVATION
The City promotes water conservation year-round with messaging, events, rebates and water waste enforcement. Messaging efforts include social media, bill inserts and direct mailers. Events include seasonal events, like Earth Day, region-wide partnerships and workshops that cover topics on turf conversion, plant selection and smart irrigation. Water waste enforcement follows city municipal code prohibitions. Here are some examples of what you can do to save water: 1) Purchase and install a smart irrigation controller. These devices use weather data to automatically adjust your irrigation schedule for you. See our website for current rebates. 2) Apply for a free residential Water Wise House Call. Receive a survey of your outdoor irrigation system; this includes a leak check, system issue check and free sprinkler nozzles. For information about these programs, visit www.cityofwestsacramento.org/water. 3) Check your toilet for a leak. Put a little food coloring in the tank of your toilet. If that color appears in the bowl, you have a leak. This is the most common leak around the house and can waste a lot of water.

OUTDOOR WATER CONSERVATION
The City recommends watering your landscape no more than three days per week to reduce outdoor water use. You can find a customized irrigation schedule by visiting www.beyonddrought.com. After entering some information about your landscape, you will receive an irrigation schedule tailored to your landscape’s needs. Other ways to reduce outdoor water use include: 1) Purchasing and installing a smart irrigation controller. These devices use weather data to automatically adjust your irrigation schedule for you. See our website for current rebates. 2) Applying for a free residential Water Wise House Call. Receive a survey of your outdoor irrigation system; this includes a leak check, system issue check and free sprinkler nozzles. For information about these programs, visit www.cityofwestsacramento.org/water

WATER METERS
The City of West Sacramento continues making progress toward installing water meters to meet with California State Law, Assembly Bill No. 514 requirements to be fully metered. Water meters will enable the City to better quantify customer water use and help increase water conservation. Also, the City is complying with Assembly Bill No. 1953 (AB 1953) by not installing meters that have leaded materials but installing water meters that are made with brass based material. To comply with State mandates, the City has installed over 7,500 meters in phases bringing the City near 90% metered at the close of 2017. For the year 2018, the City anticipates installing an additional 1300 water meters by implementing two more phases of the project. The first phase of water meter installations is anticipated to install over 700 meters in both Southport and North areas of the City, and the last phase will involve installation of meters in the Bridgeway Island neighborhood. The Water Meter Installation Program is expected to be complete in spring 2019 with the replacement of backyard mains in the Linden Acres Subdivision. The transition of all current flat rate to metered rate users began in 2017. The City will continue providing residents with information of this process prior to any conversion process to help customers better understand the transition.

For additional information about the water meter program contact the Project Manager Mauricio Meza-Pedraza, Assistant Engineer at (916) 617–5327.
### Water Quality Analysis Results

**Disinfection Byproducts**

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Type</th>
<th>MCL</th>
<th>Violation</th>
<th>Max Level Det</th>
<th>Units</th>
<th>DLR</th>
<th>MCL</th>
<th>CA PHG</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexavalent Chromium</td>
<td>Primary</td>
<td>No</td>
<td>0.19</td>
<td>PPB</td>
<td>1.0</td>
<td>10</td>
<td>0.02</td>
<td>Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>Primary</td>
<td>No</td>
<td>17</td>
<td>PPB</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>Primary</td>
<td>No</td>
<td>0.7</td>
<td>PPM</td>
<td>0.1</td>
<td>1.5</td>
<td>0.0</td>
<td>Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories</td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>Primary</td>
<td>No</td>
<td>1.34</td>
<td>pCi/L</td>
<td>3.0</td>
<td>15</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>Gross Beta</td>
<td>Primary</td>
<td>No</td>
<td>1.55</td>
<td>pCi/L</td>
<td>4.0</td>
<td>50</td>
<td>N/A</td>
<td>Decay of natural and man-made deposits</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Secondary</td>
<td>No</td>
<td>74</td>
<td>PPB</td>
<td>50</td>
<td>200</td>
<td>600</td>
<td>Erosion of natural deposits; residue from some surface water treatment processes</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>Secondary</td>
<td>No</td>
<td>5.9</td>
<td>PPM</td>
<td>N/A</td>
<td>500</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Secondary</td>
<td>No</td>
<td>2.0</td>
<td>TON</td>
<td>N/A</td>
<td>3</td>
<td>N/A</td>
<td>Naturally-occurring organic materials</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>Secondary</td>
<td>No</td>
<td>150</td>
<td>umhos/cm</td>
<td>N/A</td>
<td>1600</td>
<td>N/A</td>
<td>substances that form ions when in water; seawater influence</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>Secondary</td>
<td>No</td>
<td>5.6</td>
<td>PPM</td>
<td>N/A</td>
<td>500</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits; industrial wastes</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>Secondary</td>
<td>No</td>
<td>110</td>
<td>PPM</td>
<td>N/A</td>
<td>1000</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>N/A</td>
<td>No</td>
<td>12</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Naturally occurring in the environment</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>N/A</td>
<td>No</td>
<td>11</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>N/A</td>
<td>No</td>
<td>5.9</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>N/A</td>
<td>No</td>
<td>5.6</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>runoff/leaching from natural deposits</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>Unregulated*</td>
<td>No</td>
<td>3.0</td>
<td>PPM</td>
<td>3.0</td>
<td>N/A</td>
<td>N/A</td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

* EPA uses the Unregulated Contaminant Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Save Drinking Water Act (SDWA).

#### TURBIDITY

<table>
<thead>
<tr>
<th>Constituent</th>
<th>MCL</th>
<th>PHG</th>
<th>Level Found</th>
<th>Sample Data</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>TT = 1 NTU</td>
<td>N/A</td>
<td>0.083 NTU</td>
<td>2017</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>TT = 95% of samples</td>
<td>≤0.3 NTU</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The City of West Sacramento routinely monitors your drinking water according to federal and state laws. The following table shows selected results of our monitoring tests for the period of January 1st to December 31st, 2016. To help you better understand the terms and abbreviations used in the report, we've provided the following definitions:

**HAAS** - Haloacetic acids

**DDW** - Division of Drinking Water

Detection Limit For Purposes Of Reporting (DLR) - the concentration of a contaminant in drinking water at or above which is reported to the California Department of Public Health

Parts Per Million (PPM) Or Milligrams Per Liter (MGL) - a measurement of chemical concentration.

Parts Per Billion (ppb) Or Micrograms Per Liter (MGL) - a measurement of chemical concentration.

Picocuries Per Liter (pCi/L) - a unit of measurement of a chemical concentration.

Regulatory Action Level (AL) - the level of a contaminant in drinking water below which there is no known or expected risk to health.

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health.

Maximum Contaminant Level (MCL) - the maximum level of a contaminant that is allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL) - the highest level of disinfectant allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level Disinfectant below which there is no known or expected risk to health. MRLDs Do not reflect the benefits of the use of disinfected to control microbial contaminants

Micro Ohms Per Centimeter (UMHOS/CM) - a unit of measurement.

N/A - not applicable.

Nephelometric Turbidity Unit (NTU) - a measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.

LRAA - Locational running annual average

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health.

Maximum Contaminant Level (MCL) - the maximum level of a contaminant that is allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL) - the highest level of disinfectant allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level Goal (MRLDG) - the level of a drinking water disinfectant below which there is no known or expected risk to health. MRLDs Do not reflect the benefits of the use of disinfectants to control microbial contaminants

Micro Ohms Per Centimeter (UMHOS/CM) - a unit of measurement.

N/A - not applicable.

Nephelometric Turbidity Unit (NTU) - a measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.

LRAA - Locational running annual average

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health.

Maximum Contaminant Level (MCL) - the maximum level of a contaminant that is allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL) - the highest level of disinfectant allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology.

Maximum Residual Disinfectant Level Goal (MRLDG) - the level of a drinking water disinfectant below which there is no known or expected risk to health. MRLDs Do not reflect the benefits of the use of disinfectants to control microbial contaminants

Micro Ohms Per Centimeter (UMHOS/CM) - a unit of measurement.

N/A - not applicable.

Nephelometric Turbidity Unit (NTU) - a measurement of the clarity of water. Turbidity in excess of 5 NTU is noticeable to the average person.

**2017 West Sacramento Water Hardness**

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>TTHM (PPB)</th>
<th>HAAS (PPB)</th>
<th>Grains per gallon</th>
<th>Miligrams per litre (mg/L) parts per million (PPM)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type MCL</td>
<td>Primary</td>
<td>Primary</td>
<td>Less than 1.0</td>
<td>Less than 17.1</td>
<td>Slightly</td>
</tr>
<tr>
<td>MCL</td>
<td>80</td>
<td>60</td>
<td>1.0 - 3.5</td>
<td>17.1 - 60</td>
<td>Slightly</td>
</tr>
<tr>
<td>Average</td>
<td>54.1</td>
<td>33.2</td>
<td>3.5 - 7.0</td>
<td>60 - 120</td>
<td>Moderately Hard</td>
</tr>
<tr>
<td>Range</td>
<td>18.1-83.7</td>
<td>12.0-58.0</td>
<td>7.0 - 10.5</td>
<td>120 - 180</td>
<td>Hard</td>
</tr>
<tr>
<td>Sample Date</td>
<td>2017</td>
<td>2017</td>
<td>Over 10.5</td>
<td>over 180</td>
<td>Very Hard</td>
</tr>
</tbody>
</table>

**Water Hardness Scale**

The City of West Sacramento water hardness is equal to 17.1 mg/L of hardness.

**Hardness**

There is no MCL for hardness. We are frequently asked for the hardness of West Sacramento water in grains per gallon. One grain/gallon is equal to 17.1 mg/L of hardness.
THE CITY WATER SYSTEM TREATS YOUR WATER BY ADDING FLUORIDE TO THE NATURALLY OCCURRING LEVEL IN ORDER TO PROMOTE DENTAL HEALTH IN CONSUMERS. THE FLUORIDE LEVELS IN THE TREATED WATER FOR 2017 WERE MAINTAINED WITHIN AN AVERAGE MONTHLY RANGE OF 0.70 TO 0.80 MG/L. THE MAXIMUM FLUORIDE LEVEL MEASURED IN WEST SACRAMENTO DURING 2017 WAS 1.99 MG/L. THE CALIFORNIA MCL FOR FLUORIDE IS 2.0 MG/L. A PUBLIC HEALTH GOAL (PHG) OF 1 PPM (1,000 PPB) IS DEVELOPED FOR FLUORIDE IN DRINKING WATER. THIS LEVEL IS INTENDED TO BE AN APPROXIMATE YEAR-ROUND AVERAGE. THE U.S. ENVIRONMENTAL PROTECTION AGENCY’S (U.S. EPA’S) MAXIMUM CONTAMINANT LEVEL (MCL) FOR FLUORIDE IS 4 MG/L. U.S. EPA’S MCL WAS SET TO PROTECT AGAINST CRIPPLING SKELETAL FLUOROSIS, WITH A SECONDARY MCL OF 2 MG/L TO PROTECT AGAINST DENTAL FLUOROSIS (IN MILD CASES, FLUOROSIS IS A SLIGHT DISCOLORATION OF TEETH, IN MORE SEVERE CASES IT CAN LEAD TO Pitting AND BREAKING OF THE TEETH). MODERATE TO SEVERE DENTAL FLUOROSIS IS RARE WHEN THE DRINKING WATER FLUORIDE LEVEL IS IN THE RANGE OF 1 MG/L, BUT BEGINS TO BECOME SIGNIFICANT AT CONCENTRATIONS CLOSE TO 2 MG/L. THE PHG IS BASED ON A NO-OBSERVED-ADVERSE EFFECT LEVEL (NOAEL) OF 1 MG/L FOR DENTAL FLUOROSIS IN CHILDREN. A RELATIVE SOURCE CONTRIBUTION OF 100% (2) WAS APPLIED YIELDED A CALCULATED PHG OF 1 MG/L. THIS LEVEL IS JUDEGED TO BE THE OPTIMUM LEVEL FOR REDUCING THE PREVALENCE OF DENTAL FLUOROSIS WHILE PROVIDING PROTECTION AGAINST DENTAL CARIES. IN REVIEWING THE AVAILABLE DATA ON HEALTH EFFECTS OF FLUORIDE, STUDIES HAVE BEEN FOUND WHICH PROVIDE SOME INDICATION THAT THERE MAY BE A CAUSATIVE RELATIONSHIP BETWEEN LIFETIME CONSUMPTION OF FLUORIDATED DRINKING WATER AND INCREASED INCIDENCE OF HIP FRACTURE IN THE ELDERLY. HOWEVER, THIS HEALTH ENDPOINT IS NOT SUFFICIENTLY ESTABLISHED AT PRESENT TO PROVIDE THE BASIS FOR CALCULATING A PHG. THEREFORE, OEHHA CALCULATES A PHG OF 1 MG/L (1 PPM) FOR FLUORIDE IN DRINKING WATER.

THE CITY WATER SYSTEM TREATS YOUR WATER BY ADDING FLUORIDE TO THE NATURALLY OCCURRING LEVEL IN ORDER TO PROMOTE DENTAL HEALTH IN CONSUMERS. THE FLUORIDE LEVELS IN THE TREATED WATER FOR 2017 WERE MAINTAINED WITHIN AN AVERAGE MONTHLY RANGE OF 0.70 TO 0.80 MG/L. THE MAXIMUM FLUORIDE LEVEL MEASURED IN WEST SACRAMENTO DURING 2017 WAS 1.99 MG/L. THE CALIFORNIA MCL FOR FLUORIDE IS 2.0 MG/L. A PUBLIC HEALTH GOAL (PHG) OF 1 PPM (1,000 PPB) IS DEVELOPED FOR FLUORIDE IN DRINKING WATER. THIS LEVEL IS INTENDED TO BE AN APPROXIMATE YEAR-ROUND AVERAGE. THE U.S. ENVIRONMENTAL PROTECTION AGENCY’S (U.S. EPA’S) MAXIMUM CONTAMINANT LEVEL (MCL) FOR FLUORIDE IS 4 MG/L. U.S. EPA’S MCL WAS SET TO PROTECT AGAINST CRIPPLING SKELETAL FLUOROSIS, WITH A SECONDARY MCL OF 2 MG/L TO PROTECT AGAINST DENTAL FLUOROSIS (IN MILD CASES, FLUOROSIS IS A SLIGHT DISCOLORATION OF TEETH, IN MORE SEVERE CASES IT CAN LEAD TO Pitting AND BREAKING OF THE TEETH). MODERATE TO SEVERE DENTAL FLUOROSIS IS RARE WHEN THE DRINKING WATER FLUORIDE LEVEL IS IN THE RANGE OF 1 MG/L, BUT BEGINS TO BECOME SIGNIFICANT AT CONCENTRATIONS CLOSE TO 2 MG/L. THE PHG IS BASED ON A NO-OBSERVED-ADVERSE EFFECT LEVEL (NOAEL) OF 1 MG/L FOR DENTAL FLUOROSIS IN CHILDREN. A RELATIVE SOURCE CONTRIBUTION OF 100% (2) WAS APPLIED YIELDED A CALCULATED PHG OF 1 MG/L. THIS LEVEL IS JUDEGED TO BE THE OPTIMUM LEVEL FOR REDUCING THE PREVALENCE OF DENTAL FLUOROSIS WHILE PROVIDING PROTECTION AGAINST DENTAL CARIES. IN REVIEWING THE AVAILABLE DATA ON HEALTH EFFECTS OF FLUORIDE, STUDIES HAVE BEEN FOUND WHICH PROVIDE SOME INDICATION THAT THERE MAY BE A CAUSATIVE RELATIONSHIP BETWEEN LIFETIME CONSUMPTION OF FLUORIDATED DRINKING WATER AND INCREASED INCIDENCE OF HIP FRACTURE IN THE ELDERLY. HOWEVER, THIS HEALTH ENDPOINT IS NOT SUFFICIENTLY ESTABLISHED AT PRESENT TO PROVIDE THE BASIS FOR CALCULATING A PHG. THEREFORE, OEHHA CALCULATES A PHG OF 1 MG/L (1 PPM) FOR FLUORIDE IN DRINKING WATER.

SODIUM

We are also frequently asked about the sodium content of the West Sacramento water. Sodium is a naturally occurring chemical element and is present in our source water. The maximum level of sodium measured in West Sacramento water during 2016 was 9.0 mg/L. At this level an individual will ingest 9.0 mg of sodium for every liter of water consumed. There is no MCL for sodium in drinking water. Sodium in the diet is also measured in milligrams (mg). There is no MCL for sodium in drinking water. There is no MCL for sodium in drinking water.

Drinking water is also measured in milligrams (mg). There is no MCL for sodium in drinking water. Sodium in the diet is also measured in milligrams (mg). There is no MCL for sodium in drinking water. There is no MCL for sodium in drinking water.

FLUORIDE

The City water system treats your water by adding FLUORIDE to the naturally occurring level in order to promote dental health in consumers. The fluoride levels in the treated water for 2017 were maintained within an average monthly range of 0.70 to 0.80 mg/L. The maximum level of Fluoride measured in West Sacramento during 2017 was 1.99 mg/L. The California MCL for fluoride is 2.0 mg/L. A Public Health Goal (PHG) of 1 ppm (1,000 ppb) is developed for fluoride in drinking water. This level is intended to be an approximate year-round average. The U.S. Environmental Protection Agency’s (U.S. EPA’s) Maximum Contaminant Level (MCL) for fluoride is 4 mg/L. U.S. EPA’s MCL was set to protect against crippling skeletal fluorosis, with a secondary MCL of 2 mg/L to protect against dental fluorosis (in mild cases, fluorosis is a slight discoloration of teeth, in more severe cases it can lead to pitting and breaking of the teeth). Moderate to severe dental fluorosis is rare when the drinking water fluoride level is in the range of 1 mg/L, but begins to become significant at concentrations close to 2 mg/L. The PHG is based on a no-observed-adverse effect level (NOAEL) of 1 mg/L for dental fluorosis in children. A relative source contribution of 100% (2) was applied yielding a calculated PHG of 1 mg/L. This level is judged to be the optimum level for reducing the prevalence of dental fluorosis while providing protection against dental caries. In reviewing the available data on health effects of fluoride, studies have been found which provide some indication that there may be a causative relationship between lifetime consumption of fluoridated drinking water and increased incidence of hip fracture in the elderly. However, this health endpoint is not sufficiently established at present to provide the basis for calculating a PHG. Therefore, OEHHA calculates a PHG of 1 mg/L (1 ppm) for fluoride in drinking water.

SODIUM

We are also frequently asked about the sodium content of the West Sacramento water. Sodium is a naturally occurring chemical element and is present in our source water. The maximum level of sodium measured in West Sacramento water during 2016 was 9.0 mg/L. At this level an individual will ingest 9.0 mg of sodium for every liter of water consumed. There is no MCL for sodium in drinking water. Sodium in the diet is also measured in milligrams (mg). There is no recommended dietary allowance for sodium. However, the National Academy of Sciences states that a person should consume at least 500 mg a day and healthy adults should stay within the range of 1,100 to 3,300 mg a day. Individuals concerned with the effect of West Sacramento water on their daily intake of sodium should consult a healthcare professional. Additional information about potential health effects of drinking water can be obtained by calling the EPA’s Safe Drinking Water Hotline at (800) 426-4791.

TURBIDITY

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The EPA’s Interim Enhanced Surface Water Treatment Rule requires that the Combined Filter Effluent (CFE) turbidity be less than 0.3 NTU in at least 95% of the measurements taken each month, and that the maximum CFE turbidity not exceed 1 NTU. In 2017, the city achieved 100% and the highest CFE turbidity was 0.20 NTU. (5/29/2017)

TOTAL COLIFORMS AND E COLI

There are a variety of bacteria, parasites, and viruses which can potentially cause health problems if humans ingest them in drinking water. Testing water for each of these potential pathogens (disease causing agents) would be difficult and expensive. Instead, water quality and public health workers measure coliform levels. The presence of any coliforms in drinking water suggests that there may be a pathway for pathogens and/or fecal contamination to enter the drinking water distribution system (pipes, storage facilities, etc.). For drinking water, total coliforms are used to determine the adequacy of water treatment and the integrity of the distribution system. The absence of total coliforms in the distribution system minimizes the likelihood that fecal pathogens are present. Thus, total coliforms are used to determine the vulnerability of a system to fecal contamination. The MCL for total coliforms is no more than 5 million of the samples collected per month test positive for total coliforms. In 2017 the city collected and analyzed 787 samples for total coliforms and E. coli. All samples collected in this time frame tested negative for total coliforms.

NITRATE

Nitrates in drinking water below 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant’s blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. The George Kristoff Water Treatment Plant drinking water results for nitrate was non-detectable.

WATER QUALITY

All public water supplies must meet stringent federal and state standards. Treated water delivered to you and your family not only meets, but surpasses state and federal standards for quality and safety. We know this because we continually test our water using modern equipment and procedures, in our own state-certified laboratory and commercial laboratories. This regular program of water analysis, including sampling at over thirty-five state certified labs throughout the city, assures safe water for you and your family.