FOR QUESTIONS ABOUT THIS REPORT:
Chris Kania
Water Treatment Superintendent
(916) 617-4870

FOR ADDITIONAL COPIES OF THIS REPORT:
Public Works Department
(916) 617-4850

TO REPORT PROBLEMS AFTER HOURS:
Public Works Department
(916) 372-3375

FOR BILLING QUESTIONS:
Finance Department
(916) 617-4589

FOR WATER METER RETROFIT PROGRAM:
Ryan Teves
(916) 617-4665

FOR WATER QUALITY COMPLAINTS:
George Kristoff Water Treatment Plant
(916) 617-4860
EPA Safe Drinking Water Hotline
(800) 426-4791

CITY OF WEST SACRAMENTO WEB SITE:
www.cityofwestsacramento.org

CITY COUNCIL MEETINGS:
Twice monthly - Wednesdays at 7 p.m. in the
City Council Chambers, 1110 West Capitol Ave.
For specific dates check the “City Calendar” on
www.cityofwestsacramento.org
or phone (916) 617-4500.

TO REPORT WATER WASTE:
(916) 617-4545

QUESTIONS AND COMMENTS
We hope you find this report to be useful and informative. If you have any questions or comments about this report or about your drinking water, please call Chris Kania, Water Treatment Plant Superintendent, (916) 617-4870. For Water Conservation: Ryan Burnett (916) 617-4590.

OUR COMMITMENT TO YOU
The City of West Sacramento has delivered over 125 billion gallons of high quality, treated water to our residents since the opening of the George Kristoff Water Treatment Plant in 1988. Today, as West Sacramento grows, our commitment to you continues. We are proud of the service we provide and promise to continue to deliver the highest quality drinking water to you and your family.

FOR QUESTIONS ABOUT THIS REPORT:
Chris Kania
Water Treatment Superintendent
(916) 617-4870

FOR ADDITIONAL COPIES OF THIS REPORT:
Public Works Department
(916) 617-4850

TO REPORT PROBLEMS AFTER HOURS:
Public Works Department
(916) 372-3375

FOR BILLING QUESTIONS:
Finance Department
(916) 617-4589

FOR WATER METER RETROFIT PROGRAM:
Ryan Teves
(916) 617-4665

FOR WATER QUALITY COMPLAINTS:
George Kristoff Water Treatment Plant
(916) 617-4860
EPA Safe Drinking Water Hotline
(800) 426-4791

CITY OF WEST SACRAMENTO WEB SITE:
www.cityofwestsacramento.org

CITY COUNCIL MEETINGS:
Twice monthly - Wednesdays at 7 p.m. in the
City Council Chambers, 1110 West Capitol Ave.
For specific dates check the “City Calendar” on
www.cityofwestsacramento.org
or phone (916) 617-4500.

TO REPORT WATER WASTE:
(916) 617-4545

QUESTIONS AND COMMENTS
We hope you find this report to be useful and informative. If you have any questions or comments about this report or about your drinking water, please call Chris Kania, Water Treatment Plant Superintendent, (916) 617-4870. For Water Conservation: Ryan Burnett (916) 617-4590.

OUR COMMITMENT TO YOU
The City of West Sacramento has delivered over 125 billion gallons of high quality, treated water to our residents since the opening of the George Kristoff Water Treatment Plant in 1988. Today, as West Sacramento grows, our commitment to you continues. We are proud of the service we provide and promise to continue to deliver the highest quality drinking water to you and your family.
The City of West Sacramento is dedicated to supplying its customers with a safe and reliable supply of high-quality drinking water. We are pleased to present this annual water report, which conforms to a federal regulation that requires community water systems to provide customers with detailed information about their drinking water. It includes information about water supply sources, water treatment, water quality, and source water protection programs. We hope the information in this report increases your understanding of the water treatment process and your confidence in the quality of the water you drink.

WATER SUPPLY SOURCES
The City of West Sacramento’s main water supply is the Sacramento River. Our intake structure is located at Bryte Bend, upstream of the confluence of the Sacramento and American rivers. To ensure an adequate water supply for West Sacramento’s current and future needs, the City maintains 3 water supply contracts.

SOURCE WATER PROTECTION
A community’s drinking water supply is a valuable resource and needs protection. The quality and reliability of source water can have a significant impact on a community’s economy and quality of life. Given the importance of the Sacramento River to West Sacramento’s continuing growth and to the health and well-being of our residents, the City actively participates in several source water protection programs.

OUTDOOR WATER CONSERVATION
The City recommends watering your landscape more than three days per week to reduce outdoor water use. You can find a customized irrigation schedule by visiting www.beyondthedrought.com. After entering some information about your landscape, you will receive an irrigation schedule tailored to your landscape’s needs. Other ways to reduce outdoor water use include: 1) Purchasing and installing a smart irrigation controller. These devices use weather data to automatically adjust your irrigation schedule for you. See our website for current rebates. 2) Applying for a free residential Water Wise House Call. Receive a survey of your outdoor irrigation system; this includes a leak check, system issue check and free sprinkler nozzles. For information about these programs, visit: www.cityofwestsacramento.org/water.

WATER METERS
The City of West Sacramento continues making progress toward installing water meters to meet with California State Law, Assembly Bill No. 514 requirements to be fully metered. Water meters will enable the City to better quantify customer water use and help increase water conservation. Also, the City is complying with Assembly Bill No. 1953 (AB 1953) by not installing meters that have leaded materials but installing water meters that are made with brass based material. To comply with State mandates, the City has installed: 339 meters last year in Linden Neighborhood. 208 meters will be installed during the Linden Backyard Water Main Replacement Project – Anticipated to begin in the Fall 2019. 246 meters will be installed this year in various locations of North Side of City – Expected to be complete Spring 2020. 1053 meters will be upgraded this year in Southport Neighborhood – Expected to be complete Spring 2020. The transition of all current flat rate to metered rate users began in 2017. The City will continue providing residents with information of this process prior to any conversion process to help customers better understand the transition.

For additional information about the water meter program contact the Project Manager Mauricio Meza-Pedraza, Assistant
Disinfection Byproducts

SAMPLING CONDUCTED AUGUST 2018

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Type MCL</th>
<th>Violation</th>
<th>Max Level Det</th>
<th>Units</th>
<th>DLR</th>
<th>MCL</th>
<th>CA PHG</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Secondary</td>
<td>No</td>
<td>31.8</td>
<td>PPB</td>
<td>50</td>
<td>100</td>
<td>600</td>
<td>Erosion of natural deposits; reside from some surface water treatment processes</td>
</tr>
<tr>
<td>Barium</td>
<td>Primary</td>
<td>No</td>
<td>21.6</td>
<td>PPB</td>
<td>100</td>
<td>200</td>
<td>200</td>
<td>Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits</td>
</tr>
<tr>
<td>Manganese</td>
<td>Unregulated*</td>
<td>No</td>
<td>1.4</td>
<td>PPB</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>Naturally occurring in the environment</td>
</tr>
<tr>
<td>Fluoride</td>
<td>Primary</td>
<td>No</td>
<td>.68</td>
<td>PPM</td>
<td>0.1</td>
<td>2.0</td>
<td>1.0</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Arsenic</td>
<td>Primary</td>
<td>No</td>
<td>1.40</td>
<td>PPB</td>
<td>6.0</td>
<td>6.0</td>
<td>1.0</td>
<td>Erosion of natural deposits; runoff from orchards; glass and electronics wastes</td>
</tr>
<tr>
<td>Thallium</td>
<td>Primary</td>
<td>No</td>
<td>.69</td>
<td>PPB</td>
<td>1.0</td>
<td>2.0</td>
<td>0.1</td>
<td>Leaching from ore-processing plants: discharge from electronics, glass and drug factories</td>
</tr>
<tr>
<td>Chloride</td>
<td>Secondary</td>
<td>No</td>
<td>7.96</td>
<td>PPM</td>
<td>N/A</td>
<td>500</td>
<td>N/A</td>
<td>Run off/leaching from natural deposits; seawater influence</td>
</tr>
<tr>
<td>Odor</td>
<td>Secondary</td>
<td>No</td>
<td>2.0/4.0</td>
<td>TON</td>
<td>N/A</td>
<td>3.0</td>
<td>N/A</td>
<td>Naturally occurring organic materials</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>Secondary</td>
<td>No</td>
<td>191</td>
<td>umhos/cm</td>
<td>N/A</td>
<td>160</td>
<td>N/A</td>
<td>Substances that form ions when in water; seawater influence</td>
</tr>
<tr>
<td>Sulfate</td>
<td>Secondary</td>
<td>No</td>
<td>6.44</td>
<td>PPM</td>
<td>N/A</td>
<td>500</td>
<td>N/A</td>
<td>Run off/leaching from natural deposits; industrial wastes</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>Secondary</td>
<td>No</td>
<td>87</td>
<td>PPM</td>
<td>N/A</td>
<td>1000</td>
<td>N/A</td>
<td>Run off/leaching from natural deposits</td>
</tr>
<tr>
<td>Silver</td>
<td>Secondary</td>
<td>No</td>
<td>.522</td>
<td>PPB</td>
<td>N/A</td>
<td>100</td>
<td>N/A</td>
<td>Industrial discharge</td>
</tr>
<tr>
<td>Calcium</td>
<td>N/A</td>
<td>No</td>
<td>14.3</td>
<td>PPM</td>
<td>N/A</td>
<td>100</td>
<td>N/A</td>
<td>Run off/leaching from natural deposits</td>
</tr>
<tr>
<td>Magnesium</td>
<td>N/A</td>
<td>No</td>
<td>7.0</td>
<td>PPM</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Run off/leaching from natural deposits</td>
</tr>
</tbody>
</table>

* EPA uses the Unregulated Contaminant Rule (UCMR) to collect data for contaminants that are suspected to be present in drinking water and do not have health-based standards set under the Save Drinking Water Act (SDWA).

* 1,2,3-TCP was not sampled, The City of West Sacramento received a notice of violation from the State Water Board. Sampling for the missed first quarter was completed in January 2019.

Water Quality Analysis Results

Disinfection Byproducts

<table>
<thead>
<tr>
<th>Location</th>
<th>1 QTR</th>
<th>2 QTR</th>
<th>3 QTR</th>
<th>4 QTR</th>
<th>Location</th>
<th>1 QTR</th>
<th>2 QTR</th>
<th>3 QTR</th>
<th>4 QTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>28.0</td>
<td>55.0</td>
<td>49.0</td>
<td>46.0</td>
<td>Site 1</td>
<td>12.0</td>
<td>31.0</td>
<td>20.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Site 2</td>
<td>5.0</td>
<td>48.0</td>
<td>60.0</td>
<td>38.0</td>
<td>Site 2</td>
<td>10.0</td>
<td>25.0</td>
<td>22.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Site 3</td>
<td>44.2</td>
<td>43.4</td>
<td>46.8</td>
<td>42.8</td>
<td>Site 3</td>
<td>19.3</td>
<td>20.0</td>
<td>19.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Site 4</td>
<td>27.0</td>
<td>46.0</td>
<td>40.0</td>
<td>42.0</td>
<td>Site 4</td>
<td>13.0</td>
<td>31.0</td>
<td>13.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Site 5</td>
<td>39.4</td>
<td>38.3</td>
<td>37.3</td>
<td>38.8</td>
<td>Site 5</td>
<td>17.5</td>
<td>19.5</td>
<td>18.8</td>
<td>18.8</td>
</tr>
<tr>
<td>Site 6</td>
<td>39.0</td>
<td>55.0</td>
<td>67.0</td>
<td>44.0</td>
<td>Site 6</td>
<td>21.0</td>
<td>38.0</td>
<td>26.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Site 7</td>
<td>49.8</td>
<td>49.8</td>
<td>52.8</td>
<td>51.3</td>
<td>Site 7</td>
<td>22.5</td>
<td>26.3</td>
<td>26.8</td>
<td>26.3</td>
</tr>
<tr>
<td>Site 8</td>
<td>44.2</td>
<td>44.3</td>
<td>46.8</td>
<td>42.8</td>
<td>Site 8</td>
<td>19.3</td>
<td>20.0</td>
<td>19.5</td>
<td>18.8</td>
</tr>
<tr>
<td>Site 9</td>
<td>27.0</td>
<td>49.0</td>
<td>52.0</td>
<td>31.0</td>
<td>Site 9</td>
<td>11.0</td>
<td>21.0</td>
<td>13.0</td>
<td>15.0</td>
</tr>
<tr>
<td>Site 10</td>
<td>37.1</td>
<td>39.0</td>
<td>41.5</td>
<td>39.8</td>
<td>Site 10</td>
<td>18.0</td>
<td>18.0</td>
<td>17.5</td>
<td>16.5</td>
</tr>
<tr>
<td>Site 11</td>
<td>34.0</td>
<td>36.0</td>
<td>58.0</td>
<td>37.0</td>
<td>Site 11</td>
<td>10.0</td>
<td>24.0</td>
<td>20.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Site 12</td>
<td>37.4</td>
<td>36.5</td>
<td>39.5</td>
<td>38.8</td>
<td>Site 12</td>
<td>17.0</td>
<td>17.5</td>
<td>18.0</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Turbidity

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>PHG</th>
<th>Level Found</th>
<th>Sample Data</th>
<th>Violation</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>TT = 1 NTU</td>
<td>N/A</td>
<td>0.268 NTU</td>
<td>2018</td>
<td>No</td>
<td>Soil runoff</td>
</tr>
<tr>
<td>TT = 95% of samples ≤0.3 NTU</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The City of West Sacramento routinely monitors your drinking water according to federal and state laws. The following tables show selected results of our monitoring tests for the period of January 1st to December 31st, 2018. To help you better understand the terms and abbreviations used in the report, we’ve provided the following definitions:

HAAS - Halocetic acids

Detection Limit For Purposes Of Reporting (DLR) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirement that a water system must follow.

Parts Per Billion (PPB) Or Milligrams Per Liter (MGL) - a measurement of chemical concentration.

Picocuries Per Liter (PCL) - a unit of measurement of a chemical concentration.

Regulatory Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirement that a water system must follow.

LRAA - Local action running average

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health.

Maximum Contaminant Level (MCL) - the level of a contaminant that is allowed in drinking water. It is set as close to the maximum contaminant level goal as feasible, using the best available treatment technology. MCLs for contaminants that affect health are called Primary Drinking Water Standards (PDWS). MCLs for contaminants that may influence aesthetically or taste, color, odor, mineral content and clarity are called Secondary Drinking Water Standards (SDWS).

Public Health Goal (PHG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. California Environmental Protection Agency sets public health goals.

Primary Drinking Water Standard (PDWS) - MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment techniques.

Secondary Drinking Water Standard (SDWS) - MCLs for contaminants that may influence consumer acceptance of water, but are not otherwise harmful. These standards relate to taste, odor, color, mineral content and clarity.

TTHM - a cumulative running average.

^ WATER HARDNESS SCALE ^

HARDNESS

There is no MCL for hardness. We are frequently asked for the hardness of West Sacramento water in grains per gallon. One grain/gallon is equal to 17.1 mg/L of hardness.

WATER HARDNESS SCALE

<table>
<thead>
<tr>
<th>Classification</th>
<th>Description</th>
<th>Brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately Hard</td>
<td>3.8 - 6.5 gal/L</td>
<td>Less than 1.0</td>
</tr>
<tr>
<td>Hard</td>
<td>6.5 - 10.0 gal/L</td>
<td>Less than 1.71 gal/L</td>
</tr>
<tr>
<td>Very Hard</td>
<td>Over 10.0 gal/L</td>
<td>Equal to 17.1 mg/L of hardness</td>
</tr>
</tbody>
</table>

2018 WEST SACRAMENTO WATER HARDNESS

<table>
<thead>
<tr>
<th>Grains per gallon</th>
<th>Miligrams per litre (mg/L) parts per million (PPM)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>65</td>
<td>Moderately Hard</td>
</tr>
</tbody>
</table>

Water Hardness

- **Calcification:** The hardness of water is a measure of the amount of calcium and magnesium ions present in the water. These ions come from natural deposits or industrial sources.
- **Impact:** Hard water can affect the effectiveness of detergents and soaps, leaving them less effective. It can also contribute to the scaling of pipes and appliances.
- **Tongue:** The tongue can be a good indicator of hardness as it may become coated due to the presence of hard water.

Water Quality Analysis

- **Constituent:** The type of contaminant present in the water.
- **MCL:** The Maximum Contaminant Level for the contaminant.
- **VIolation:** Whether the contaminant was found to be above the MCL.
- **Max Level Det:** The maximum level of the contaminant detected.
- **Units:** The unit of measurement for the contaminant.
- **DLR:** The detection limit for reporting the contaminant.
- **MCL:** The Maximum Contaminant Level for the contaminant.
- **CA PHG:** The Public Health Goal for the contaminant.
- **Source:** The source or type of the contaminant.
WHAT YOU SHOULD KNOW ABOUT...

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>AL</th>
<th>PHG (MCLG)</th>
<th>Amount Detected (90th Percentile)</th>
<th>Sites Above AL/Total Sites</th>
<th>Year Sampled</th>
<th>Violation</th>
<th>Typical Source of Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>μg/L</td>
<td>1300</td>
<td>300</td>
<td>130</td>
<td>4/30</td>
<td>2016</td>
<td>No</td>
</tr>
</tbody>
</table>

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time may experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years may suffer liver or kidney damage. People with Wilson’s Disease should consult their personal doctor.

| Lead | μg/L | 15 | 0.2 | 1.5 | 2/30 | 2016 | No | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits |

FLUORIDE

The City water system treats your water by adding fluoride to the naturally occurring level in order to promote dental health in consumers. The fluoride levels in the treated water for 2018 were maintained within an average monthly range of 0.79 to 1.02 mg/L. The maximum level of Fluoride measured in West Sacramento during 2018 was 1.2 mg/L. A Public Health Goal (PHG) of 1 ppm is developed for fluoride in drinking water. This level is intended to be an approximate year-round average. The U.S. Environmental Protection Agency’s (U.S. EPA’s) Maximum Contaminant Level (MCL) for fluoride is 4 mg/L. U.S. EPA’s MCL was set to protect against crippling skeletal fluorosis, with a secondary MCL of 2 mg/L to protect against dental fluorosis. In mild cases, fluorosis is a slight discoloration of teeth, in more severe cases it can lead to pitting and breaking of the teeth. Moderate to severe dental fluorosis is rare when the drinking water fluoride level is in the range of 1 mg/L, but begins to become significant at concentrations close to 2 mg/L. The California MCL for fluoride is 2.0 mg/L. The PHG is based on a no-observed-adverse-effect-level (NOAEL) of 1 mg/L for dental fluorosis in children. A relative source contribution of 100% (1) was applied yielding a calculated PHG of 1 mg/L. This level is judged to be the optimum level for reducing the prevalence of dental fluorosis while providing protection against dental caries. In reviewing the available data on health effects of fluoride, studies have been found which provide some indication that there may be a causative relationship between lifetime consumption of fluoridated drinking water and increased incidence of hip fracture in the elderly. However, this health endpoint is not sufficiently established at present to provide the basis for calculating a PHG. Therefore, OEHHHA calculates a PHG of 1 mg/L (1 ppm) for fluoride in drinking water.

TURBIDITY

Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The EPA’s Interim Enhanced Surface Water Treatment Rule requires that the Combined Filter Effluent (CFF) turbidity be less than 0.3 NTU in at least 95% of the measurements taken each month, and that the maximum CFF turbidity not exceed 1 NTU. In 2018, the City achieved 100% and the highest CFF turbidity was 0.268 NTU. (5/17/2018)

TOTAL COLIFORMS AND E COLI

There are a variety of bacteria, parasites, and viruses which can potentially cause health problems if humans ingest them in drinking water. Testing water for each of these potential pathogens (disease causing agents) would be difficult and expensive. Instead, water quality and public health workers measure coliform levels. The presence of any coliforms in drinking water suggests that there may be a pathway for pathogens and/or fecal contamination to enter the drinking water distribution system (pipes, storage facilities, etc.). For drinking water, total coliforms are used to determine the adequacy of water treatment and the integrity of the distribution system. The absence of total coliforms in the distribution system minimizes the likelihood that fecal pathogens are present. Thus, total coliforms are used to determine the vulnerability of a system to fecal contamination. The MCL for total coliforms is no more than 5% of the samples collected in any month positive for total coliforms. In 2018 the City collected 786 samples for total coliforms and E coli and did not exceed the 5% rule for any month sampled.

NITRATE

Nitrates in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant’s blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueing of the skin. Nitrates levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider. The George Kristoff Water Treatment Plant drinking water results for nitrate were non-detectable.

IMPORTANT INFORMATION FOR IMMUNO-COMPROMISED PERSONS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer and undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their healthcare providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the USEPA Safe Drinking Water Hotline, (800) 426-4791.

WATER QUALITY

All public water supplies must meet stringent federal and state standards. Treated water that is delivered to you and your family not only meets but surpasses state and federal standards for quality and safety. We know this because we continually test or water using modern equipment and procedures in our own laboratory and State approved commercial laboratories. This regular program of water analysis, including sampling at over thirty-five representative sample stations throughout the City, assures safe drinking water for you and your family.

- **microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operation, and wildlife.
- **inorganic contaminants**, such as salts and metals, that can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **pesticides and herbicides** that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems.
- **radioactive contaminants** that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB